Finite Mixture Models and Model-Based Clustering
نویسندگان
چکیده
Finite mixture models have a long history in statistics, having been used to model pupulation heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classification. This paper provides a detailed review into mixture models and model-based clustering. Recent trends in the area, as well as open problems are also discussed.
منابع مشابه
The Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملOn Model-Based Clustering, Classification, and Discriminant Analysis
The use of mixture models for clustering and classification has burgeoned into an important subfield of multivariate analysis. These approaches have been around for a half-century or so, with significant activity in the area over the past decade. The primary focus of this paper is to review work in model-based clustering, classification, and discriminant analysis, with particular attenti...
متن کاملModel Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملA survey of model-based clustering algorithms for sequential data
Clustering is a fundamental and widely applied method in understanding and exploring a data set. Interest in clustering has increased recently due to the emergence of several new areas of applications including data mining, bioinformatics, web use data analysis, image analysis and so on. Model-based clustering is one of the most important and widely used clustering methods. This paper presents ...
متن کاملmclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models.
Finite mixture models are being used increasingly to model a wide variety of random phenomena for clustering, classification and density estimation. mclust is a powerful and popular package which allows modelling of data as a Gaussian finite mixture with different covariance structures and different numbers of mixture components, for a variety of purposes of analysis. Recently, version 5 of the...
متن کامل